Kilopower

Powering a NASA Mission to Mars Frontiers in Science Public Lecture Series

The Future?

Reactors on Mars – NASA Concept

Picture - NASA Glenn Research

Los Alamos National Laboratory 10/13/2018 | 2

Video of Kilopower Reactor

Why Nuclear Power in Space

By MP - Planets 2008 ing CC RV-SA 3.0. https://commons.wikimedia.org/w/index.php?curid=45708230

Nuclear Fission

- Fission splitting of an atom's nucleus by a neutron
- If enough fissionable material is present a chain reaction can be established
- The mass needed to sustain a chain reaction is the critical mass

Heat Pipe

- A heat pipe is a sealed tube with a small amount of liquid that boils at the hot end, the vapor travels to the cold end where it condenses back to a liquid.
- A wick is used to bring the fluid back to the hot end
- A heat pipe works in any direction - even against gravity
- Heat pipe are a very efficient way to move heat

Stirling Engine

 A Stirling engine is a heat engine used to turn heat into mechanical work or electricity

Wikipedia commons

Modern Stirling Engine

Kilopower – Reactor Concept for Deep Space

1000 W: 400 kg

Titanium/Water Heat Pipe Radiator

Stirling Power Conversion System

Sodium Heat Pipes

Lithium Hydride/Tungsten Shielding

Beryllium Oxide Neutron Reflector Uranium Moly Cast Metal Fuel —

B₄C Neutron Absorber Rod

7 COMPENENTS

- Core
- Neutron reflector
- Heat pipes
- Radiation shielding
- Start-stop rod
- Stirling engine convertors
- Radiator to remove excess heat

Kilopower – Surface Concept

Los Alamos National Laboratory 10/13/2018 | 9

Kilopower is designed to deliver 1 to 10 kilowatts of electric power

Deep Space Mission Power

Planetary Surface Power

Toaster ~ 1 kW

10 kW

Peak use at home ~ 5 kW

Power for multiple houses ~ 10 kW

Kilopower – Key Features

Attributes:

- 1 to 10 kW of electricity generated
- Reliable passive heat transfer
- Efficient Stirling engine heat to electricity conversion
- Solid Uranium metal fuel can be made easily
- Nuclear effects are low, so testing is minimized
- Low startup power in space battery only
- Reactor can be started, stopped and restarted
- Reactor self regulates using simple physics

Benefits:

- Low reoccurring costs for each reactor
- Reactor is safe to launch (minor radioactivity in fuel)
- Reactor will not be started until at destination
- Allows for higher power missions
- Reactor works in extreme environments
- Reactor could be used for electric propulsion

How big is Kilopower?

10 kilowatt electric Kilopower reactor

Potential Applications

Government Missions

- Human Mars surface missions
- Lunar (moon) surface missions
- Planetary orbiters and landers:
 - Europa, Titan, Enceladus, Neptune, Pluto, etc.

Commercial Missions

- Space power utility
- Asteroid/space mining
- Lunar/Mars settlements

Power uses

Mars Surface Power

Human missions on Mars

 Previous robotic missions (Spirit/Opportunity, Phoenix, Curiosity) used either solar or radioisotope system that produced ~100 W

Projected human exploration power needs is:

- Up to 40 kW day/night continuous power
- Four to Five Kilopower reactors

Mars surface presents major challenges

- 1/3rd solar flux of Earth
- Greater than 12 hour nights (need batteries)
- Variations in solar energy by geography
- Long-term dust storms (years in length)

NASA

What is needed for Humans to go to Mars

Electricity would be used to make:

- Propellant to get back to Mars orbit
 - Liquid Oxygen
 - Methane

International Mars Research Station - Shaun Moss

Mars Base Camp – NASA Langley

Electricity is needed for:

- Oxygen for astronauts
- Purify water
- Power of habitat and rover

LANL's History with NASA Rover / NERVA 1955 – 1972

- Project Rover A thermal nuclear rocket designed to shorten trips to Mars
 - Kiwi(s) A & B (1955-1964)
 - Phoebus (1964-1969)
 - Peewee(1969-1972)
 - Nuclear Fuel Furnace
- Design and Zero-Power Testing Performed at Los Alamos
- Full-Power Testing Performed at the Nevada Test Site

SNAP-10A

- SNAP-10A was a space-qualified nuclear reactor power system.
 - The only US space reactor
 - The reactor generated 35 kW of thermal power but only delivered about 500 watts of electrical power.
- It was launched into earth orbit in April, 1965.
- The reactor ran for an abbreviated 43-day flight test after the reactor was prematurely shut down by a faulty command receiver.

The Road to Kilopower

- •1965: SNAP program
- •1970-2010: Multiple NASA/DOE space reactor programs
 - -Limited success, but NO nuclear heated tests and NO flight missions
- •2010: Planetary Science Decadal Survey
 - Designs for simple low power reactor concept proposed
- 2012: Demonstration Using Flattop Fissions (DUFF)
 - –Proof-of-Concept test
- •2014: NASA Mars Campaign:
 - -Small fission power baselined for potential Mars missions
- 2015: Kilopower Project leading to KRUSTY experiment:
 - -Effort to design, build, and test a prototype reactor

DUFF: A "Critical" Starting Point

Proof-of-Concept Test

Test Configuration

- Highly Enriched Uranium core with central hole to accommodate heat pipe
- Heat transfer via single water heat pipe
- Power generation via two opposed freepiston Stirling Engines

Significance

- First-ever heat pipe cooled fission experiment
- First-ever Stirling engine operation with fission heat
- Demonstration of nuclear reactivity feedback with prototype components

Test Objectives

- Use electric power generated from nuclear heat to power a load (light panel)
- Demonstrate that basic reactor physics was well characterized and predictable using current analytic tools

DUFF -- Complete Experimental Setup

Self Regulating Reactor

Stirling Engines Want More Power

Power demand goes up

Power from reactor goes up

Reactor gets smaller, less neutrons leak out, reactivity goes up

Stirling Engines Want Less Power

Power demand goes down

Power from reactor goes down

Reactor gets larger, more neutrons leak out, reactivity goes down

Why this reactor design?

Very simple, reliable design

- -Self-regulating design using simple reactor physics
- -The power is so low there should be no measurable nuclear effects
- -Low power allows small temperature gradients and stresses, and high tolerance to any potential transient
- Available fuel with existing Infrastructure
- Heat pipe reactors are simple, reliable, and robust
 - -Eliminates components associated with pumped loops; simplifies integration
 - -Fault tolerant power and heat transport system
 - -The only reactor startup action is to withdraw reactivity control
- Systems use existing thermoelectric or Stirling engine technology and design
- Low cost testing and demonstration
 - -Non-nuclear system demonstration requires very little infrastructure and power.
 - Nuclear demonstration accommodated in existing facility, the thermal power and physical size fits within current activities at the Nevada National Security Site.

Space Reactor Safety

- A reactor that has not undergone fission, (been turned on), has very very low safety concerns. It will have from 1 to 10's of curies of naturally occurring radioactivity
- This is 1,000s to 10,000s times lower radioactivity than in current radioisotope systems already flown in space
- Launch accidents will have consequences <u>100's of</u> <u>times less</u> than background radiation or radiation from a commercial plane flight
- After the reactor has fissioned, it will become radioactive
 - Reactors would only be used in deep space, very high Earth orbit (long term decay) and on other planets.

KRUSTY: Kilopower Reactor Using Stirling TechnologY

Mock Up of Assembled Power System

Stirling Engines

Heat Pipes

Core

Flight vs. KRUSTY

Los Alamos National Laboratory 10/13/2018 | 26

Kilopower Reactor Using Stirling TechnologY = KRUSTY

- Designed with space flight-like components
 - Uranium core, neutron reflector, heat pipes, Stirling engines
- Tested at flight-like conditions
 - In a vacuum
 - Design thermal power
 - Design temperature
 - Design system dynamics
- Performs tasks needed for space flight
 - Computer modeling
 - Nuclear test operations
 - Ground safety
 - Transport and assembly

Los Alamos and NASA – Test Prep

Experiment Assembly

Los Alamos National Laboratory 10/13/2018 | 29

KRUSTY: Summary of Nuclear Experiments

The **KRUSTY Test** was conducted in four phases over 5 months and started in November 2017 and finishing in March 2018.

- Component Criticals: The reactor core, neutron reflector, and startup rod are tested alone to measure reactivity.
- Cold Criticals: Heat pipes and power conversion are added, and reactivity is gradually added until the system is critical but no heat is produced.
- Warm Criticals: Reactivity is increased until full reactor power (4 kilowatts thermal) is achieved at moderate temperatures of less than 400 C.
- Full Power Run: A notional mission profile is simulated including reactor start up, ramp up to full power, steady state operation at about 800 C, several operational transients, and shut down.

KRUSTY Full-Power Run Goals

- Demonstrate start-up, stability, and steady-state performance.
 - Start the same way as warm criticals, but continue to add reactivity until an average fuel temperature of 800 C is reached.
 - Turn on Stirling engines when temperature reaches 650 C.
- Demonstrate reactor self regulation
 - Increase and decrease power removed by Stirling engines/simulators, with no reactor control action
- Demonstrate reactor fault tolerance
 - Simulate a failed heat-pipe or engine by halting power removal from a Stirling simulator, with no reactor control action.
- Demonstrate ability of reactor to remain operational after acute failure of all active heat removal (at end of ~28 hour run).

KRUSTY Full Power Run

Actual test data from Kilopower nuclear test performed Mar 20-21, 2018 - reactor temperature is measured by thermocouples on fuel perimeter, fission power is directly scaled from neutron flux

Los Alamos National Laboratory 10/13/2018 | 32

Okay, what's next

Project needs a <u>technology demonstration</u> <u>mission</u>

- -Work on mission begins in 2020
- Leading candidate is to land a reactor on the moon

Mission would include several new task such as:

- Design and testing of startup-rod mechanism
- Formal safety analysis of launch,
- Building space flight hardware
- Testing for launch loads,
- Study lifetime effects,
- Integration of reactor with spacecraft

The Significance of KRUSTY

- KRUSTY was the first nuclear-powered operation of a truly new fission reactor concept in the US in over 40 years.
- KRUSTY provided valuable experience and data
 - Successfully exercised nuclear infrastructure, expertise, regulatory framework, etc.
 - Data from KRUSTY will help benchmark codes to design and fission systems well beyond Kilopower.
- KRUSTY demonstrated the passive reactor operation of the Kilopower reactor class.
 - The nuclear performance of KRUSTY is highly prototypic to any Kilopower concept between 1 and 10 kWe.
- KRUSTY showed that developing a small reactor is not inherently expensive.
 - A new reactor concept was designed, fabricated and tested for <\$20M.
- KRUSTY demonstrated a space reactor concept that can used for near-term space science and exploration.
- KRUSTY/Kilopower is the first step towards truly astounding space fission capabilities.

Los Alamos National Laboratory 10/13/2018 | 34

Could Kilopower soon power a moon base?

