Methods for Sensitivity and Uncertainty Analysis in Nuclear Engineering Applications

Dr. Christopher M. Perfetti Assistant Professor Nuclear Engineering Department University of New Mexico

Presentation Outline

- Part 1 Introduction to Sensitivity Coefficients
- Part 2 Applications of Sensitivity Analysis
 - Design Optimization
 - Uncertainty Quantification
 - Benchmark Experiment Selection
 - Experimental Data Assimilation
- Part 3 Current Research

About Me

- Born and raised in Florida
- **Education:**
 - **2007:** B.S. in Nuclear Engineering, University of Florida
 - **2008:** M.S. in Nuclear Engineering, University of Florida
 - **2012:** PhD. in Nuclear Engineering, University of Michigan
- 2012-2018: R&D Scientist, Oak Ridge National Laborator
- 2018-Present: Assistant Professor, University of New Mexico

Presentation Outline

Part 1 – Introduction to Sensitivity Coefficients

- Part 2 Applications of Sensitivity Analysis
 - Design Optimization
 - Uncertainty Quantification
 - Benchmark Experiment Selection
 - Experimental Data Assimilation
- Part 3 Current Research

Sensitivity Analysis and Uncertainty Propagation

Sensitivity coefficients provide insight on the sources and impact of uncertainty in nuclear engineering models.

Sensitivity Analysis and Uncertainty Propagation

Sensitivity coefficients provide insight on the sources and impact of uncertainty in nuclear engineering models.

Sensitivity Analysis and Uncertainty Propagation

Sensitivity coefficients provide insight on the sources and impact of uncertainty in nuclear engineering models.

• Sensitivity coefficients describe the fractional change in a response that is due to perturbations, or uncertainties, in system parameters. $\delta R / R$

$$S_{R,\Sigma_x} = \frac{\delta K/K}{\delta \Sigma_x / \Sigma_x}$$

• The SCALE TSUNAMI code calculates sensitivity coefficients for critical eigenvalue or reaction rate ratio $R = \sqrt{\Sigma_1 \Phi}$ s: $R = k_{eff}$ NUCLEAR

• Sensitivity coefficients describe the fractional change in a response that is due to perturbations, or uncertainties, in system parameters. $\delta R / R$

$$S_{R,\Sigma_x} = \frac{\delta K/K}{\delta \Sigma_x / \Sigma_x}$$

• The SCALE TSUNAMI code calculates sensitivity coefficients for critical eigenvalue or reaction rate ratio $R = \chi_{eff} \frac{\delta_n \phi}{\langle \Sigma_2 \phi \rangle}$

 Eigenvalue sensitivity coefficient calculations in TSUNAMI are calculated using the First-Order Perturbation Equation.

$$S_{k,\Sigma_{x}} = \Sigma_{x} \frac{<\Phi^{*} \left(\lambda \frac{\delta F}{\delta \Sigma_{x}} - \frac{\delta B}{\delta \Sigma_{x}}\right) \Phi >}{\lambda < \Phi^{*} F \Phi >}$$

 For a sample capture reaction (*cap.*), the First-Order Perturbation Equation reduces to:

$$S_{k,\Sigma_{cap.}} = \frac{\langle \Phi^* \Sigma_{cap.} \Phi \rangle}{\frac{1}{k} \langle \Phi^* \Sigma_f \Phi \rangle}$$

- Tallying reaction rates is relatively straightforward for a Monte Carlo code.
- Tallying the adjoint flux (Φ^*) is more challenging.

What is the Adjoint Flux?

 The adjoint flux, or "importance," describes how much a neutron will contribute to a response.

 For a sample capture reaction (*cap.*), the First-Order Perturbation Equation reduces to:

$$S_{k,\Sigma_{cap.}} = \frac{\langle \Phi^* \Sigma_{cap.} \Phi \rangle}{\frac{1}{k} \langle \Phi^* \Sigma_f \Phi \rangle}$$

- Tallying reaction rates is relatively straightforward for a Monte Carlo code.
- Tallying the adjoint flux (Φ^*) is more challenging.

Continuous-Energy Resolution

• Continuous-energy capabilities allow for a better understanding what phenomena contribute a system's uncertainty.

Presentation Outline

Part 1 – Introduction to Sensitivity Coefficients

- Part 2 Applications of Sensitivity Analysis
 - Design Optimization
 - Uncertainty Quantification
 - Benchmark Experiment Selection
 - Experimental Data Assimilation
- Part 3 Current Research

Advanced Sensitivity Methods: Generalized Perturbation Theory

 Generalized Perturbation Theory (GPT) calculates sensitivity coefficients for responses that can be expressed as the ratio of reaction rates.

$$S_{R,\Sigma_{\mathcal{X}}} = \frac{\delta R/R}{\delta \Sigma_{\mathcal{X}}/\Sigma_{\mathcal{X}}} \qquad R = \frac{\langle \Sigma_1 \phi \rangle}{\langle \Sigma_2 \phi \rangle}$$

 Calculating generalized sensitivity coefficients requires solving an inhomogeneous, or generalized, adjoint equation:

$$(L^* - \lambda P^*)\Gamma^* = S^*$$

- Applications for GPT sensitivity/uncertainty analysis include:
 - Relative Powers
 - Isotope Conversion Ratios
 - Multigroup Cross Sections

+ C. M. Perfetti, B. T. Rearden, "Development of a Generalized Perturbation Theory Method for Uncertainty and Sensitivity Analysis using Continuous-Energy Monte Carlo Methods," *Nucl. Sci. Eng.*, 182, *3*, 354–368 (2016).

Isotope Production Opportunities

- The High Flux Isotope Reactor (HFIR) at ORNL provides one of the highest intensity neutron fluxes.
- HFIR can provide unique isotopes, some of which have no alternative U.S. production source, including:
- ¹⁴C useful in medical applications such as studying diabetes, gout, anemia, and acromegaly
- ⁶³Ni explosives detection, airport security
- ²²⁹Th provides ²²⁵Ac for α-particle cancer therapy
- ²³⁸Pu radioisotope power for space exploration
- ²⁵⁴Es production of super-heavy elements
- ²⁵²Cf source of neutrons for nuclear reactor startup, study of materials with neutron diffraction, oil well logging, and neutron spectroscopy

Sensitivity Applications: Design **Optimization**

The Long Road to ²⁵²Cf ²⁴³Am ²⁴⁴Am ²⁴⁴Cm ²⁴⁵Cm ²⁴⁶Cm ²⁴⁷Cm ²⁴⁸Cm ²⁴⁹Cm ²⁵⁰Bk ²⁴²Pu ²⁴³Pu ²⁴⁹Bk ²⁵⁰Cf ²⁵¹Cf ²⁵²Cf 1% 5% 12% 98% Fission 7% Products Fission Products Less than 1% of all heavy curium feedstock in 100% HFIR is transmuted into ²⁵²Cf. An ORNL LDRD by Perfetti et. al used capture-tofission sensitivity coefficients to improve the efficiency of ²⁵²Cf transmutation. • This work achieved a greater than 10x improvement in ²⁵²Cf production efficiency. 2% 86% Fission Fission Products

Products

Presentation Outline

Part 1 – Introduction to Sensitivity Coefficients

Part 2 – Applications of Sensitivity Analysis

- Design Optimization
- Uncertainty Quantification
- Benchmark Experiment Selection
- Experimental Data Assimilation
- Part 3 Current Research

Sensitivity Applications: Uncertainty Quantification

Sensitivity coefficients can be combined with cross section uncertainties to quantify the uncertainty in a response.

$$\tilde{S}_{k,\Sigma_{\chi}} \cdot Cov_{\Sigma_{\chi},\Sigma_{y}} \cdot S^{T}_{k,\Sigma_{y}} = \sigma_{k}^{2}$$

Sensitivity Applications: Uncertainty Quantification

Sensitivity coefficients can be combined with cross section uncertainties to quantify the uncertainty in a response.

Identifying Nuclear Data Needs

 Sensitivity-based uncertainty analyses offer insight on which reactions and neutron energies contribute the most uncertainty to responses of interest.

Reaction Contributions to the Uncertainty in the ²⁴⁴ Cm Conversion Ratio	
²⁴⁴ Cm Fission Reaction	17.62%
²⁴⁴ Cm Neutron Capture	4.96%
²⁷ Al Inelastic Scatter Reaction	0.72%
²⁴⁴ Cm Elastic Scatter Reaction	0.59%
¹ H Elastic Scatter Reaction	0.56%
Total Data-Induced Uncertainty	18.33%

Energy-dependent contributions to the uncertainty in the ²⁴⁴Cm conversion ratio.

Presentation Outline

Part 1 – Introduction to Sensitivity Coefficients

Part 2 – Applications of Sensitivity Analysis

- Design Optimization
- Uncertainty Quantification
- Benchmark Experiment Selection
- Experimental Data Assimilation
- Part 3 Current Research

Sensitivity Applications: Benchmark Similarity Assessment for Next-Generation Reactor Systems

The similarity coefficient, c(k) or ck, describes the amount of nuclear data-induced uncertainty that is shared by two systems.

NN	NUCLEAR
1 OLI	ENGINEERING

Sensitivity Applications: Benchmark Similarity Assessment for Next-Generation Reactor Systems

- The similarity coefficient, c(k) or c_k , describes the amount of nuclear data-induced uncertainty that is shared by two systems. $S_{R_1,\Sigma_{\chi}} \cdot Cov_{\Sigma_{\chi},\Sigma_{y}} \cdot S_{R_2,\Sigma_{y}}^T = \sigma_{R_1,R_2}^2 \longrightarrow c_k = \frac{\sigma_{R_1,R_2}^2}{\sigma_{R_1}\sigma_{R_2}}$ $\begin{pmatrix} \frac{\delta R/R}{\delta \Sigma/\Sigma} \end{pmatrix} (\Delta \Sigma/\Sigma)^2 \begin{pmatrix} \frac{\delta R/R}{\delta \Sigma/\Sigma} \end{pmatrix} (\Delta R/R)^2$
- The TSUNAMI-IP code calculates c_k values between a target application and representation and r

TSUNAMI in Practice

- U.S. Nuclear Regulatory Commission
 - Nuclear Materials Safety and Safeguards, Nuclear Reactor Regulation, Office of New Reactors
- U.S. DOE / Areva / Duke Energy
 - Mixed Oxide Fuel Fabrication Facility
- Candu Energy
 - ACR-1000 Design Validation
- Atomic Energy of Canada, Ltd.
 - ACR-700 NRC Review/PIRT
- U.S. DOE
 - Yucca Mountain post-closure criticality safety
- Global Nuclear Fuels
 - Transportation package licensing
- Svensk Kärnbränslehantering AB
 - Swedish used fuel repository
- Organization for Economic Cooperation and Development, Nuclear Energy Agency _ _
 - International Expert Groups

Presentation Outline

Part 1 – Introduction to Sensitivity Coefficients

Part 2 – Applications of Sensitivity Analysis

- Design Optimization
- Uncertainty Quantification
- Benchmark Experiment Selection
- Experimental Data Assimilation
- Part 3 Current Research

Data Assimilation

Data

The Borg

Data Assimilation

Monte Carlo radiation transport M&S tools are extremely high fidelity, relying mostly on first principle assumptions.

Premise:

Disagreement between experimental results and high-fidelity M&S tools is caused primarily by errors in nuclear data.

• Corollary:

Monte Carlo radiation transport M&S tools are extremely high fidelity, relying mostly on first principle assumptions.

Premise:

Disagreement between experimental results and high-fidelity M&S tools is caused primarily by errors in nuclear data.

• Corollary:

Monte Carlo radiation transport M&S tools are extremely high fidelity, relying mostly on first principle assumptions.

Premise:

Disagreement between experimental results and high-fidelity M&S tools is caused primarily by errors in nuclear data.

• Corollary:

Monte Carlo radiation transport M&S tools are extremely high fidelity, relying mostly on first principle assumptions.

Premise:

Disagreement between experimental results and high-fidelity M&S tools is caused primarily by errors in nuclear data.

• Corollary:

TSURFER Tools for Data Adjustment and Experimental Data Assimilation

<u>TSURFER:</u> <u>Tool</u> for <u>S/U</u> analysis of <u>Response</u> <u>Functionals</u> using <u>Experimental</u> <u>Results</u>

Uses sensitivity information to **consistently** adjust nuclear cross section data and reconcile biases between integral experiment results and computational predictions.

$$S_{f(x),x} = \frac{\frac{\partial f(x)}{f(x)}}{\frac{\partial x}{x}}$$

Modified cross section and cross section uncertainty data is used to anticipate computational biases in criticality safety applications.

Data Assimilation and Calibration

- Experimental benchmark data (E) is used to improve the accuracy of the initial computed responses (C).
- This assimilation consistently adjusts the underlying nuclear data.

TSURFER Cross Section Adjustments

- Experimental benchmark data (E) is used to improve the accuracy of the initial computed responses (C).
- This assimilation consistently adjusts the underlying nuclear data.

Realistic Cross Section Adjustments?

- TSURFER adjusts multigroup (i.e. energyaveraged) cross sections.
- This approach cannot generate usable nuclear data evaluations.

Realistic Cross Section Adjustments?

- TSURFER adjusts multigroup (i.e. energyaveraged) cross sections.
- This approach cannot generate usable nuclear data evaluations.

Realistic Cross Section Adjustments?

- TSURFER adjusts multigroup (i.e. energyaveraged) cross sections.
- This approach cannot generate usable nuclear data evaluations.

Presentation Outline

- Part 1 Introduction to Sensitivity Coefficients
- Part 2 Applications of Sensitivity Analysis
 - Design Optimization
 - Uncertainty Quantification
 - Benchmark Experiment Selection
 - Experimental Data Assimilation
- Part 3 Current Research

NNSA Consortia on Monitoring, Technology, and Verification: "Improved Calibration of Evaluated Nuclear Resonance Parameters"

- Task 1: Develop sensitivity capabilities for evaluated nuclear data.
- Task 2: Modify TSURFER to assimilate experimental data by adjusting fundamental nuclear data.
- Task 3: Evaluate the accuracy of nuclear data and nuclear covariance adjustments. NUCLEAR

LANL Monte Carlo Methods Subcontract: 1. Fission Multiplicity Models in Monte Carlo Simulations

- Goal is to use high fidelity fission multiplicity models in Monte Carlo critical and subcritical simulations.
 - Work is exploring the accuracy of MCNP simulations for subcritical ICSBEP benchmark responses using higher fidelity fission physics models.
 - Work will explore using fission matrices to accelerate near-critical simulations.

LANL Monte Carlo Methods Subcontract: 2. S/U-based Validation for Nuclear Criticality

- Goal is to better understand the use of S/U-based validation in nuclear criticality safety applications.
 - Upper Subcriticality Limit (USL) calculations vary significantly when using sensitivity coefficients for different sub-sections of a system.
 - It is not clear which USL is the most appropriate.

LANL Monte Carlo Methods Subcontract: 2. S/U-based Validation for Nuclear Criticality

Safaty

NEUP Grant: Inferring Cross Sections for Short-lived Radioisotopes

- ²³⁷Np is commonly used as the seed material to produce ²³⁸Pu.
- Low quality nuclear data for isotopes in the ²³⁸Pu activation chain introduces computational bias in models for ²³⁸Pu production.

NEUP Grant: Inferring Cross Sections for Short-lived Radioisotopes

- ²³⁷Np is commonly used as the seed material to produce ²³⁸Pu.
- Low quality nuclear data for isotopes in the ²³⁸Pu activation chain introduces computational bias in models for ²³⁸Pu production.

NEUP Grant: Inferring Cross Sections for Short-lived Radioisotopes

- Extensive experimental data exists for transcurium irradiation experiments, but current methods cannot assimilate this data.
- Successful assimilation could help infer cross sections for rare or short-lived radioisotopes.

 $S = \frac{d(Isotope Number Density)/Isotope Num.Den.}{d\Sigma_x/\Sigma_x}$

 A tool performing sensitivity analysis for the number density of isotopes in depletion and transmutation calculations is needed for this cross section data calibration.

Please contact: Chris Perfetti cperfetti@unm.edu

"All models are wrong, but some are useful." – Professor George E. P. Box

